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Morse and Transue [6-8] initiated the development of a theory of

integration with respect to a bimeasure which was subsequently studied by

Thomas [10]. For these authors. bimeasures are continuous bilinear func-

tionals on C(E,) x C(E 2 ). where C (Ei). i=1.2. are the usual spaces of

continuous functions with compact support on the locally compact Hausdorff

spaces Ei. i=1.2. More recently, motivated by the problem of finding a

Fourier representation for the covariance of a second order process, this

theory has been expanded by Niemi [9] and Chang and Rao [2]. Both the bi-

linear functional and the set function approaches have now been studied as

well as the Banach valued case developed by Ylinen [11].

In the works mentioned above the authors consistently impose, in their

definition of integrability. a Fubini type condition which cannot usually be

bypassed. The purpose of this note is to show that under a suitable re-

striction of the definition of integrability. the Fubini-type requirement

becomes obsolete.

Let X be a Banach space over F = R or C and let (EA) be a measurable

space. A vector measure is a a-additive set function p: A --# X. Integra-

tion of functions f: E - F with respect to vector measures is taken in the

Bartle-Dunford and Schwartz [1] sense, the reader being referred to Dunford

and Schwartz [3 IV 10] for the properties of this vector integral.

Let (El.A 1 ) and (E2.A2 ) be two measurable spaces. A vector bimeasure

(bimeasure when X = F) is a separately a-additive set function 1: AI x A2

-- X. i.e., P3(.B) and P(A,.) are vector measures for all A E Al. B E A 2 .

The proof of our result as well as our definition of integrability will

rely on the following two lemmas. The first one is classical and can be
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found in [3 p. 323] while the second is in [11].

Lemma 1 Let f: E --4 F be p-Integrable. Then, the set function v(A) = 'S

fA , A C A is a vector measure.

Lema 2 Let f: E1 --+ F be 1(-,B)-integrable for all B C 2 " Then the set

functions f1(A.-): A2 --+ X, B ---f1(A.-)(B) -f fdp(-.B) are vector measures
f A

for all A C A .

In the above and for g: E2 --*F+ the vector measures P 9(..B) can be

obtained in a completely symmetrical way.

We can now define Integrability.

Definition 3 A pair of functions (f.g). f: E I -F. g: E2 -- F is said to

be integrable with respect to the vector bimeasure 13: AI x A2 -+ X (1-inte-

grable for short) If the following two conditions hold.

(1) f is 1(-.B)-integrable for all B C A2 and g is P(A.-)-integrable for

all A C Al.

(ii) f is Pg (-.B)-integrable for all B C A2 and g is f P(A,-)-integrable !

for all A C A".
Va

Remark 4 For X = F our definition of integrability is stronger than that

of Morse and Transue. For these authors. (f.g) is integrable if in (i) and

(ii) A and B are replaced by E1 and E and if in addition
0

1 2 r0

It is also more restrictive than the strong integral of Nlemi or the

?R
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p-tntegrat of Ylinen. For both of them, a pair (f.g) is integrable if in

(ii) A and B are respectively replaced by ELI and E2 and if in addition (1)

is satisfied.

However, our definition is weaker than the strict -integral of Chang and

Rao (there is no Borel assumption on f and g or the additional Fubini

condition).

As already mentioned, with other definitions of integrability. (1)

cannot be bypassed (see [8], [11]). However, with Definition 3, this

condition will always hold.

Theorem 5 Let the pair (f,g) be 1-integrable. then

UP1 (-.B) = fgfPA.*J. V AEA1 ,B E A2. (2)
fA g "B

The common value in (2) can thus be denoted by fA fBfgdP "

Proof Let (fg) be 1-integrable. If both f and g are simple functions.

then (2) is trivial. Let f and g be bounded (f and g are measurable since

integrable in the Bartle-Dunford and Schwartz sense). Then, f and g are

uniform limits of simple functions and by the dominated convergence theorem

for vector measures (see [3 p. 328)) (2) is again true.

Let f be bounded and let Bn = (y C Bin IgI < n+l).

nV

Then. gd P(A.') = f gdfP(A,-) (Lemma 1)
fB n_=O "B

n

=I fdP9(-,Bn) (g is bounded on Bn n
n O A

a Ln V

'e e 
le i -
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= A fdPg9(-.B) (Lemma 2).

If f is not bounded, then A = U A with f bounded on each A n Hence.n--O n n

'A fl~g(*B)=0 f' fdlig(-*B) (Lemma 1)
n

nO f Pfn (f Is bounded on An

= B gdfP(A.-) (Lemma 2).

and the result is obtained.

Remark 6 Let X : * --# L(O,.,P) be a continuous V-bounded process. i.e..

Xt = fR e itXd(x). t C R. for some vector measure p: S(R) -- # L2(1,.P).

(I(R) is the Borel o-algebra of R). Then P(A.B) = Fu(A)p(B), A.B C iR). is

a bimeasure and f: IR --* C is p-integral if and only if (f,f) is P-integrable

(in the sense of Definition 3). Furthermore. EXtX = JfJ eitXeisYd(x.y).

t. s I.

In view of Theorem 5 as well as the above statements, Definition 3

appears to provide (at least in a stochastic framework) the appropriate .1'

conditions for bimeasure integration. In fact. such an analysis can be

extended to matrix bimeasure, as shown in Houdrb [4]. The reader is also

referred to KluvAnek [5] for illuminating remarks on bimeasures.

55
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